Looking into the black box


Deep learning systems are revolutionizing technology around us, from voice recognition that pairs you with your phone to autonomous vehicles that are increasingly able to see and recognize obstacles ahead. But much of this success involves trial and error when it comes to the deep learning networks themselves. A group of MIT researchers recently reviewed their contributions to a better theoretical understanding of deep learning networks, providing direction for the field moving forward.

“Deep learning was in some ways an accidental discovery,” explains Tommy Poggio, investigator at the McGovern Institute for Brain Research, director of the Center for Brains, Minds, and Machines (CBMM), and the Eugene McDermott Professor in Brain and Cognitive Sciences. “We still do not understand why it works. A theoretical framework is taking form, and I believe that we are now close to a satisfactory theory. It is time to stand back and review recent insights.”

Climbing data mountains

Our current era is marked by a superabundance of data — data from inexpensive sensors of all types, text, the internet, and large amounts of genomic data being generated in the life sciences. Computers nowadays ingest these multidimensional datasets, creating a set of problems dubbed the “curse of dimensionality” by the late mathematician Richard Bellman.

One of these problems is that representing a smooth, high-dimensional function requires an astronomically large number of parameters. We know that deep neural networks are particularly good at learning how to represent, or approximate, such complex data, but why? Understanding why could potentially help advance deep learning applications.

“Deep learning is like electricity after Volta discovered the battery, but before Maxwell,” explains Poggio, who is the founding scientific advisor of The Core, MIT Quest for Intelligence, and an investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. “Useful applications were certainly possible after Volta, but it was Maxwell’s theory of electromagnetism, this deeper understanding that then opened the way to the radio, the TV, the radar, the transistor, the computers, and the internet.”

The theoretical treatment by Poggio, Andrzej Banburski, and Qianli Liao points to why deep learning might overcome data problems such as “the curse of dimensionality.” Their approach starts with the observation that many natural structures are hierarchical. To model the growth and development of a tree doesn’t require that we specify the location of every twig. Instead, a model can use local rules to drive branching hierarchically. The primate visual system appears to do something similar when processing complex data. When we look at natural images — including trees, cats, and faces — the brain successively integrates local image patches, then small collections of patches, and then collections of...

Top