Argonne National Labs Using AI To Predict Battery Cycles


By Allison Proffitt, Editorial Director, AI Trends
Thanks to the cost reductions that have come from global electric vehicle adoption, lithium ion batteries now have an important role to play in grid storage, Susan Babinec, Argonne National Laboratory, told audiences last week at the International Battery Virtual Seminar and Exhibit . But making full use of them is going to require a bit of help from artificial intelligence.
While EVs prize high energy density, and only need to last about eight years, grid applications require more cycles, more calendar life—20 to 30 years—and more safety at a lower cost.
“Grid economics requires precise life data, which is very time and resource intensive to generate,” Babinec said. “We are using approximations that create risk, limit our design creativity, and increase cost.” The solution? Of course, in today’s day and age the solution is always artificial intelligence, Babinec quipped. “In this case, we’re going to use AI to massively reduced time to cycle life prediction.”
Sue Babinec, Program Lead, Grid Storage at Argonne National Laboratory Babinec’s team categorized the variables impacting lithium ion batteries for grid applications—acknowledging that adjusting any one variable will always mean changes in others. “For grid storage, first and foremost, low cost is always the most important,” Babinec said. But others include state-of-charge swing, C-rate, average state-of-charge, and temperature.
“Today we handle this variability by estimating the cycle life, but those estimates do not really allow us to push these cells to the limits of what they can really do,” Babinec said. “We just simply don’t have enough information on the cycle life and we are limited by the information that is provided by the cell manufacturer, which is really all about them making sure they can live up to their warranty.”
Babinec is prioritizing overall cost per cycle (levelized cost of storage, LCOS). This is a better metric than capital cost because grid storage batteries are durable goods, she explained. The Department of Energy’s target for LCOS is $0.02/kWh, a target for which we currently fall far short.
“No matter how you look at it, we are not there today with any combination of capital and cycles,” Babinec said. “We need to bring the capital down, but right here and now we need to bring the number of cycles up.”
Looking to AI to Decrease Testing Time from Two Years to Two Weeks
Argonne is applying artificial intelligence to the problem. Babinec’s group is developing rapid cycle life evaluations using AI to decrease testing from the current two years to a goal of two weeks. Argonne is the right spot for this research, Babinec argues. As the DOE’s battery hub, Argonne has plenty of data, a team of AI experts, and a new supercomputer up to the task. Aurora, created in partnership with Argonne, Cray and the DOE, will be the first...

Top