Ebook: Reinforcement Learning: An Introduction



eBook:  Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto

Focus of this Book: This book focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
DOWNLOAD PDF

Similar Books: Natural Language Processing with Python Artificial Intelligence: A Modern Approach The Handbook of Artificial Intelligence; Computers and Thought Artificial Intelligence with Python


Top